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Some remarks on Hele-Shaw flow and viscous tails 

By J. BUCKMASTER 
New York University, University Heights, N.Y. 

(Received 7 May 1969) 

A simple model is suggested to describe flow in a Hele-Shaw cell when the Hele- 
Shaw parameter A is not necessarily small. The averaged flow is potential with 
a conservative body force proportional to the local velocity. The elementary 
ramifications of this are deduced and comparisons made with experiment. In  
particular no separation is predicted if A is less than O(l ) ,  in agreement with 
experiment. Furthermore, the separation cavities occurring for large A are com- 
pletely stagnant. The theory predicts attached viscous shear layers in the wake 
of a lifting body, reminiscent of certain MHD problems. These tails were not 
observed experimentally. 

1. Introduction 
It has been known for over 70 years that slow viscous flow in a narrow gap can 

be described by a velocity potential. Hele-Shaw (1897, 1898a, b )  noticed this 
experimentally and Stokes (1898) established it theoretically. The Navier-Stokes 

( q . V ) q  = 

equations are 

v .q  = 0. 

If the bounding walls of the Hele-Shaw cell are planes of constant z then, provided 
we are not too close to any body confined within the walls, the dominant viscous 
term is 

Raz2 

If the non-dimensional cell thickness is O(h) this term is O(A-l = (Rh2)-l) and 
completely dominates the inertia terms when A is very small. The characteristic 
length for our problem is here taken to be a typical x-y dimension of any body 
inserted in the cell. Hele-Shaw flow is then described by the equations 

1 a2q _ _  

with solution 

I v .q  = 0, 

q = - &A( 1 - z2/h2) Vp, 

where p satisfies the two-dimensional Laplace equation. This solution, first 
obtained by Stokes (1898), does not satisfy the no-slip condition on any two- 
dimensional body within the cell. The other viscous terms have to be reinstated 
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to do this and lead to a boundary layer of thickness O(h). This boundary layer 
is also inertialess so that it does not separate. The total effect is that the flow 
exterior to the boundary layer is classical potential flow unmarred by wakes or 
unsteadiness. 

If A is not small, in particular if A+ 00, and R is not small then the usual two- 
dimensional flow picture is appropriate. The flow over bluff bodies does not then 
resemble the classical solution everywhere. 

It is of interest to describe the transition between these two extremes. It can 
be expected that as A is increased from very small values, that is as the inertia 
terms play a bigger role, then the nature of the flow changes and in particular, 
at some critical value of A, separation will first occur at the rear stagnation point. 
Riegels (1938) was very much concerned with the flow for moderate values of A. 
His photographs of flow over a circular cylinder show that separation first occurs 
when A = O( 1). At the same time the dye streaks, especially in the rear half of 
the flow, thicken and indicate the growing importance of three-dimensional 
effects other than the parabolic shape factor of (3). Riegels did a perturbation 
analysis for small A which he hoped to use to indicate what would happen for 
moderate A with h still very small. In  other words, he was concerned with the 
limits 

Not surprisingly, the comparison between theory and experiment was not very 
successful since A in the experiments was much too large to be described by a 
small A solution. 

Thompson (1968) was attracted by a non-uniformity that Riegels experienced 
in his small A expansions close to the body. He resolved this in a satisfactory 
way when A = O(h2) ,  i.e. R = O(1). The leading perturbation to the main body 
of the flow is then the O(h) displacement thickness effect with the inertia terms 
first making a contribution at the O(h2) term. This is no longer Riegels problem 
however, as equation (4) reminds us. Thompson’s analysis can be carried out 
with little modification when A = O(h) so that at least the inertia terms play 
a leading role in the perturbation but the limit (4) is a more complicated problem 
that remains to be solved. 

However, there is an alternative method of achieving some understanding of 
what happens when A = O( 1). This is in the nature of anirrational approximation. 
A distinctive feature of Riegels photographs is that A has to be somewhat larger 
than 1 before the smearing of the dye-lines becomes very serious. This suggests 
that for small to moderate values of A the flow can still be represented well 
enough by a function of x and y together with a shape factor depending on z. 
The purpose of this note is to explore the elementary ramifications of this observa- 
tion and to make some comparisons with a problem in magnetohydrodynamics. 

h + O ,  R+co, A = O ( l ) .  (4) 

2. Averaged equations 

integrated between the cell walls, it can be written as 
If the x component of the momentum equation (1)  is multiplied by dx and 
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where the z component of velocity w has been eliminated by using the continuity 
equation. Encouraged by Riegels experiments we approximate the flow field by 

I (6) 
p = ji(x,y), u = y) (1  -Z2/h2), 

21 = V(x, y) (1  - Z 2 / h 2 ) .  

Substitution of (6) into (5) then yields an equation for the averaged flow variables. 
This equation governs the best (in some sense) quadratic approximation to the 
flow field. It is 

with a similar equation for V. The mean vorticity satisfies 

(7) 

If the Reynolds number is large, then outside the boundary layer on the body 

az av 
ay ax 
_ _ _  - - 0  (9) 

so that the mean flow is potential. The mean flow satisfies the two-dimensional 
continuity equation, of course. This result is satisfying since it is exactly correct 
in the two limits A --f 0 and A -+ co. In  addition, comparison of Riegels’ experi- 
mental streamlines (for A = 1) with potential flow shows quite reasonable agree- 
ment. Over the forward half of the flow-field the difference is negligible. Riegels’ 
photograph reveals a slight asymmetry about they axis, the streamlines pinching 
in a little faster to the rear of the body. This introduces a slight discrepancy with 
the theory over the rear half of the flow field. The smallness of this discrepancy 
is apparent from the difficulty in detecting the experimental asymmetry without 
measurement. 

The mean flow field is not just another example of potential flow. The body 
force (15/4A) (U,  V) is conservative but it plays an important role in the modified 
Bernoulli equation, which is 

15 
4h +q:+ v@ + - $ = constant along a streamline, 

$ is the velocity potential defined by 

q = V$ 

and is not necessarily single-valued, of course. 
The ramifications of this are amusing but before discussing them it is worth 

pointing out the connexions between equation (7) and other flow situations. A 
particular limiting form of filter bed leads to an identical system of equations in 
fact. Suppose the filter bed is composed of particles so small that the drag they 
impart to the fluid is given by Stokes law. Then the body force per unit volume 
is proportional to 

pnaq, 
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where n is the particle number density, a is a typical particle dimension, p is 
the fluid viscosity and q its velocity. Consider now the Iimits 

n -+ co, a --f 0, na + const., na3 + 0. 

The volume occupied by the filter particles is then zero, but they impart a body- 
force to the fluid precisely as in (7) and its companion. 

The other comparison we would like to draw is not exact, but the equations, 
whilst different, lead to similar phenomena. We have in mind the magnetohydro- 
dynamic equations in the limit of zero magnetic Reynolds number but finite 
interaction parameter. If the magnetic field is uniform and in the y direction the 
body force (Lorentz force) is (-Nu, 0) where N is a constant. This force is 
rotational and so the flow is not potential but there are similar effects as we will 
point out in the appropriate places. 

3. Separation 
The boundary-layer equations associated with (7 )  are 

Equations (1  1)  are identical to the boundary-layer equations in the MHD problem 
provided the magnetic field is everywhere perpendicular to the layer. The body 
force (D - E,) acts as a favourable pressure gradient and can completely suppress 
separation provided A is small enough. At separation a;ii,pn = 0 but us is strictly 
positive in some neighbourhood of the wall so that at  separation 

Equation (1  1 )  then implies that 

dg 15 
- +- < 0 ds 4R 

at separation. 

Clearly, for a given 0 (i.e. a given exterior potential flow) A can always be chosen 
small enough that the inequality (12) is never satisfied and so separation cannot 
take place. To deal with a specific case, suppose we have a circular cylinder for 
which 

Equation (12) implies then that at separation 

i7 = 2 sin s (0 < s < n-1. 

- 15 
coss < __ 8R 

A < +%. 
and separation will not occur if 

Riegels experiments imply that A must, in fact, be closer to 1 to completely 
inhibit separation but the discrepancy is not too severe. It might be due to the 
fact that whilst the z averaging is reasonable in the main body of the flow it  is 
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suspect whenever the velocity gradient is of order O(h) or greater. On the other 
hand, the separation criterion can be established by an alternative argument 
that apparently does not make use of the averaged boundary-layer equations. 
To do this we make direct use of the modified Bernoulli relation, (10). The 
presence of q5 implies that there can be no circulation around a closed inviscid 
Streamline. (An inviscid streamline is one that does not plunge at some point 
into a viscous boundary layer.) This result is also true for the MHD problem 
since the Lorentz force ( - N u ,  0) always opposes the motion and therefore 

FIUTJRE 1. Separation bubble behind a circular cylinder. 

circulation in one direction would imply a pressure discontinuity. This implies 
that the wake-cavities that are formed when A is large enough to permit separa- 
tion, are true dead-water regions in which the pressure does not change across 
the streamline bounding the cavity. If this is true (severe three-dimensional 
effects could invalidate it) then on an inviscid streamline adjacent to the cavity, 
equation (10) implies Gs 15 -+- = 0 

ds 4A 

and the velocity falls steadily along such a streamline. Consider figure 1, where 
a wake cavity is sketched at the back of a circular cylinder. Suppose that the 
speed a t  A is 2 sins,. From A to B the speed falls at  the rate ( - y A )  and the 
least value it can have at  B is zero. It follows that the maximum length of AB 
is (8A/ 15) sin sA and this must satisfy the inequality 

8A 
-sin6 2 6 
15 

since the streamline lies outside the body. This inequality is only possible if 
A +$ in agreement with (13). The speed at  A is not 2 sins, of course, but it is 
in the limit sA -+ 77 so that the argument should give correctly the critical value 
of A. 

4. Viscous tails 
Separation can occur in a Hele-Shaw cell when (roughly) A is larger than 1 .  

Riegels’ experiments show this and the analysis of $3  provides some theoretical 
evidence. It follows that circulation can be generated by a lifting body, with 
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separation at a sharp trailing edge enforcing the Kutta condition. If we rewrite 
(10) in the form 

and consider a circuit around the surface of the airfoil it follows that qs cannot 
be continuous around the airfoil, since q5 is not single-valued. The only plausible 
picture is given by figure 2 .  The circulation I? generates a shear layer attached to 

p i- +qt + N$ = constant (15) 

r 

I - 42 
FIGURE 2. Lifting airfoil. 

the trailing edge. If the airfoil is slender 80 that a linear analysis is appropriate 
this sheet has initial strength 

Sq = qsl-qs2 = NF.  

Differentiation of (15) shows that the sheet decays exponentially, i.e. 

Sq = Nl?e-NS, (16) 

where s is the distance measured from the trailing edge. Note that the total 
circulation around the airfoil and the shear layer is zero. In addition, the decay 
law (16) is not the same as the linear decay law appropriate for a streamline 
bounding a separation bubble. 

Shear layers or viscous tails of the form (16) occur in the MHD problem. They 
were explicitly noticed for the first time by Ludford & Fan (1969). Previous 
analyses (Salathe & Sirovich 1967) of the linearized lifting airfoil problem were 
correct, however, since the airfoil was represented as a pressure distribution 
rather than a vortex sheet. The pressure is continuous across the tai1.t 

The effects of the viscous tail on the flow field can be easily found by the usual 
lifting line theory. The airfoil is represented as a vortex sheet with local strength y 
per unit length (figure 2 ) .  The vertical velocity at  a point on the surface of the 
airfoil is then given by 

where ( P )  denotes the principal value. 

-f A somewhat different kind of viscous tail occurs in two-dimensional MHD flow where 
the applied field is perpendicular to the plane. It is well known that this flow is potential. 
The appropriate Bernoulli equation is 

Qq2 + p  + x = constant, 

where x is the current stream function. A tail will be generated if the body is a net source 
of current, but this tail has constant strength and does not decay. 
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The simplest problem is that of a flat plate inclined at a to the free stream. 
Equation ( 1 7 )  then has solution 

where 

y ( x )  = - I ( E ) ' ( P ) S i 1 h ( t )  7r2 l + x  -1 

e-Ns 1 
h ( t ) =  277 a+- ds- [ s + l - t - '  

The total circulation round the airfoil is 

whence from (1 8) 

and on evaluating the integral 
- - 27Ta 1' = 

l+N/omdse-Ns[(,) s + 2  t - 1 1  ' 

and as N + co I' - alN4. 

The integral, which is positive, can be evaluated in terms of Whittaker functions. 
The downwash generated by the attached vortex sheet reduces the clockwise 
circulation around the airfoil. 

5. Concluding remarks 
It would be very interesting to observe these viscous tails in Hele-Shaw flow 

experimentally. To do this, it  would be important to choose A correctly. If A 
is very small, equations (16) and ( 1 9 )  imply that the sheet has strength O(A-4) 
but at  the same time it decays in a distance O(R). Furthermore, if A is too small 
the Kutta condition may not be satisfied at  the trailing edge and there may be 
no circulation a t  all. On the other hand, if A is large, so that good circulation is 
generated, the tail only has strength O(A-l). It would seem that we would need 
N - 1, i.e. A - 4. 

Dr C. J. Wood of the Department of Engineering Science, Oxford, was kind 
enough to make his Hele-Shaw cell available for examination. One thing we 
were able to establish, in agreement with the theory, is that when A - 5, so that 
the flow over a circular cylinder is well separated, then there is no rotation in 
the cavity behind the body. This was established by injecting dye into the 
cavity and wa,tching its subsequent behaviour. The cavity fluid was not com- 
pletely stagnant but its speed was an order of magnitude slower than the free 
stream and showed no evidence of reversal. 

Our search for the tail was not successful. It was confounded by the tendency 
for a separation cavity to form on the upper surface of the airfoil towards the 
trailing edge. Since watching the movements of the dye or small particles of 
dirt, was our only means of studying the velocity field, no conclusions could be 
drawn. On the credit side again though, we were able to confirm Riegels' result 

34 F L M  41 
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that separation on a circular cylinder can be suppressed when A N 1 .  No effort 
was made to measure precisely the critical value however. 

The discussion should not be finished perhaps without mentioning that im- 
plicit in the picture of the viscous tail is the absence of a rear stagnation point. 
This is true for the MHD problem discussed by Ludford & Fan (1969) as well as 
the Hele-Shaw flow. Whether the ‘inviscid’ flow is singular or whether three- 
dimensional effects became locally important is not known. 

This work was done a t  the Mathematics Department, University College 
London. Final manuscript preparation was undertaken at  New York University. 
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